Agência Estadual de Meio Ambiente Diretoria de Controle de Fontes Poluidoras Diretoria de Gestão Territorial e Recursos Hídricos

3.2.3 IGARASSU

Municípios:

Igarassu.

Constituintes principais:

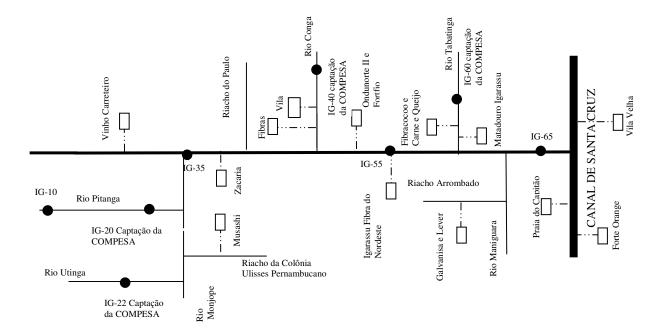
Recebe como principais afluentes pela margem esquerda, o riacho do Paulo, rio Conga e o rio Tabatinga e, pela margem direita, o rio Pitanga, rio Utinga, rio Monjope e o rio Maniquara.

Áreas de proteção:

Refúgio Ecológico Charles Darwin.

Uso do solo:

- Ocupação urbana e industrial.
- Áreas de Mata Atlântica e Mangue.
- Policultura e Silvicultura.


Uso da água:

- Abastecimento público.
 - Recepção de efluentes domésticos.
- Recepção de efluente industrial.

Atividades industriais na bacia:

Produtos alimentares, têxteis, matéria plástica, metalúrgica, bebida, indústrias do ramo sucro-alcooleiro, química, papel/papelão e perfumes/sabões/velas.

Diagrama unifilar

Agência Estadual de Meio Ambiente Diretoria de Controle de Fontes Poluidoras Diretoria de Gestão Territorial e Recursos Hídricos

Estações de amostragem da rede de monitoramento do Rio Igarassu

Zona Homogênea	Estação	Corpo d'água	Local	Coordenadas*
Interesse Ambiental	IG-10	Rio Pitanga	Na granja Nova Vida, em Engenho Regalo, a 2 km de Chã de Cruz, em Abreu e Lima.	25M 0275598 UTM 9126600
Granjas e chácaras de recreio	IG-20	Rio Pitanga	Na captação da COMPESA, em Igarassu.	25M 0286677 UTM 9129654
Granjas e chácaras de recreio	IG-22	Rio Utinga	Na captação da COMPESA, em Igarassu.	25M 0287723 UTM 9129558
Granjas e chácaras de recreio	IG-35	Rio Igarassu	Após receber o rio Monjope e antes do deságue do riacho Paulo, em Igarassu.	25M 0288626 UTM 9132490
Granjas e chácaras de recreio	IG-40	Rio Conga	Na captação da COMPESA, em Igarassu.	25M 0285686 UTM 9133788
Urbana/industrial	IG-55	Rio Igarassu	Na ponte na estrada de acesso à cidade de Igarassu, em Igarassu.	25M 0289733 UTM 9133800
Granjas e chácaras de recreio	IG-60	Rio Tabatinga	Na captação da COMPESA, em Igarassu.	25M 0285084 UTM 9136238
Estuarina	IG-65	Rio Igarassu	Estuário do rio Igarassu antes do seu deságue no canal de Santa Cruz, em Igarassu.	25M 0291505 UTM 9134402

^{*} Datum de referência cartográfica: Córrego alegre

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-10

								_					
						Data e	Hora d	as Coleta	ıs				
Parâmetro	Unid.	29/01		19/03		14/05							
		10:00		10:30		10:30							
					•						•		
Temperatura	ōС	28		25		25							
pН	-	6,1		7,0		6,6							
OD	mg/L	5,0		5,2		<u>4,9</u>							
DBO	mg/L	2,5		2,0		2,9							
Amônia	mg/L	ND		ND		0,2							
Fósforo Total	mg/L	0,04		0,02		0,11							
Daphnia	FD _d	<u>2</u>		1		1							
Coliformes Termotolerantes	NMP/100mL	8000		2300		50000							
Condutividade Elétrica	μS/cm	99,6		103		76,8							
Salinidade	ups	0,1		0,1		<0,1							
Classe na CONAMA 357/05													
Classe	-	2		2		2							
Indices e Indicadores de qualidade													
OD saturação	%	64		63		59							
Qualidade	-	Р		MC		Р							
IET rio	-	ME(53)		OL(49)		ME(58)							
Ecotoxicidade	-	T		NT		NT							
Risco de Salinidade	-	В		В		В							
Pluviometria em Igara	ssú - Fonte: APA	С											
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica	mm	103	151	263	321	358	319	308	184	108	38	34	50
Avaliação de qualidad	e:NC=não compr	ometida, PC	=pouco	compron	netida,	MC=mod	eradan	nente con	nprome	tida, P= p	oluída	e MP= m	ıuito

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

Ecotoxicidade: NT=não tóxica, T=tóxica

IET: UO= ultraoligotrófico, OL= oligotrófico, ME= mesotrófico, EU= eutrófico, SE= supereutrófico e HE= hipereutrófico Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

^{*}A Estação IG-22 não foi monitorada em 2014 devido a dificuldades de acesso

Agência
Estadual de Siretoria de Controle de Fontes Poluidoras
Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-20

		CIA HIBITO						las Coleta					
Parâmetro	Unid.	29/01		19/03		14/05							
		12:00		12:30		12:40							
	_			_									
Temperatura	ōC	27		32		26							
рН	-	<u>5,9</u>		<u>5,9</u>		6,3							
OD	mg/L	6,4		7,6		6,1							
DBO	mg/L	<u>5,6</u>		1,0		1,3							
Turbidez	UNT	3,5		10,0		15							
Sólidos Totais	mg/L	84,2		95,8		72,0							
Amônia	mg/L	ND		ND		ND							
Fósforo Total	mg/L	0,03		0,05		0,08							
Coliformes Termotolerantes	NMP/100mL	800		<u>1700</u>		<u>8000</u>							
Daphnia	FD₀	1		1		1							
Condutividade Elétrica	μS/cm	87,4		66,7		92,4							
Salinidade	ups	<0,1		<0,1		<0,1							
Classe na CONAMA 357/05	•		I		ı		I.						
Classe	-	2		2		2							
Indices e Indicadores de qualidade											•		•
OD saturação	%	80		104		75							
Qualidade	-	MC		MC		Р							
IET rio	-	OL(52)		ME(54)		ME(57)							
IQA	-	BO(69)		BO(67)		BO(60)							
Ecotoxicidade	-	NT		NT		NT							
Risco de Salinidade	-	В		В		В							
Pluviometria em Igaras	sú - Fonte: APA	С											
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica	mm	103	151	253	321	358	319	308	184	108	38	34	50

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

IQA: OT= ótima, BO= boa, AC= aceitável, RU= ruim e PE= péssima

Ecotoxicidade: NT=não tóxica, T=tóxica

IET: UO= ultraoligotrófico, OL= oligotrófico, ME= mesotrófico, EU= eutrófico, SE= supereutrófico e HE= hipereutrófico

Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

Agência Estadual de Meio Ambiente LSTAGUAL Diretoria de Controle de Fontes Poluidoras

Meio Ambiente

Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-35

		CIA HIDRO	GITALI	OA DO N	O IGA			as Coleta					
Parâmetro	Unid.	30/01		20/03		Data	1	45 001010					
rarameno	Orlid.	10:30		11:20									
		10.00	1	11.20									
Temperatura	ōС	28		27									
рН	-	7,4		6,5									
OD	mg/L	3,5		4,1									
DBO	mg/L	<u>5,8</u>		4,8									
Amônia	mg/L	ND		ND									
Fósforo Total	mg/L	0,05		0,10									
Turbidez	UNT	5,5		20									
Sólidos Totais	mg/L	109		110,0									
Daphnia	FD₀	1		1									
Coliformes Termotolerantes	NMP/100mL	<u>1100</u>		2700									
Condutividade Elétrica	μS/cm	80,7		154									
Cádmio Total	mg/L			ND									
Chumbo Total	mg/L			ND									
Cobre Total	mg/L			ND									
Cromo Total	mg/L			ND									
Ferro Total	mg/L			1,15									
Manganês Total	mg/L			0,01									
Níquel Total	mg/L			ND									
Zinco Total	mg/L			ND									
Salinidade	ups	<0,1		0,1									
Classe na CONAMA 3	357/05												
Classe	-	2		2									
Indices e Indicadores	de qualidade												
OD saturação	%	45		51									
Qualidade	-	Р		Р									
IET rio	-	ME(54)		ME(58)									
IQA	-	BO(61)		BO(55)									
Ecotoxicidade	-	NT		NT									
Risco de Salinidade	-	В		В									
Pluviometria em Igara	ssú - Fonte: APA	С											
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica Avaliação de qualidad	mm	103	151	253	321	358	319	308	184	108	38	34	50

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

IQA: OT= ótima, BO= boa, AC= aceitável, RU= ruim e PE= péssima

Ecotoxicidade: NT=não tóxica, T=tóxica

IET: UO= ultraoligotrófico, OL= oligotrófico, ME= mesotrófico, EU= eutrófico, SE= supereutrófico e HE= hipereutrófico

Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

Estadual de Agência Estadual de Meio Ambiente
Diretoria de Controle de Fontes Poluidoras
Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-40

		CIA HIDRO	JNAFT	CA DO III	O IGA								
						Data e	Hora d	as Coleta	ıs				
Parâmetro	Unid.	29/01		19/03		14/05							
		11:20		12:00		12:00							
Temperatura	ōС	27		30		29							
рН	-	<u>5,2</u>		6,0		6,7							
OD	mg/L	<u>1,3</u>		4,1		4,0							
DBO	mg/L	10,5		2,1		1,9							
Turbidez	UNT	4,0		2,5		2,0							
Sólidos Totais	mg/L	65,6		62,4		47,8							
Amônia	mg/L	ND		0,5		ND							
Fósforo Total	mg/L	0,03		0,03		0,07							
Coliformes Termotolerantes	NMP/100mL	400		11000		<u>5000</u>							
Daphnia	FD _d	1		1		1							
Condutividade Elétrica	μS/cm	50,8		59,5		54,9							
Salinidade	ups	<0,1		<0,1		<0,1							
Classe na CONAMA 3	57/05		•								•		
Classe	-	2		2		2							
Indices e Indicadores o	de qualidade		•	•		•							
OD saturação	%	16		54		52							
Qualidade	-	MP		Р		Р							
IET rio	-	OL(52)		OL(52)		ME(56)							
IQA	-	AC(46)		AC(46)		BO(59)							
Ecotoxicidade	-	NT		NT		NT							
Risco de Salinidade	-	В		В		В							
Pluviometria em Igaras	ssú - Fonte: APA	С		<u> </u>									
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica	mm	103	151	253	321	358	319	308	184	108	38	34	50

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

IQA: OT= ótima, BO= boa, AC= aceitável, RU= ruim e PE= péssima

Ecotoxicidade: NT=não tóxica, T=tóxica

IET: UO= ultraoligotrófico, OL= oligotrófico, ME= mesotrófico, EU= eutrófico, SE= supereutrófico e HE= hipereutrófico

Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

Agência Estadual de Meio Ambiente
Estadual de Meio Ambiente
Diretoria de Controle de Fontes Poluidoras
Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-55

		CIA HIDRO	a 1 1 7 1 1	OA DO 111	O IGA	117000	LUIA	ÇAO. IG∹	55				
						Data e	Hora d	las Coleta	ıs				
Parâmetro	Unid.	30/01		20/03		15/05							
		10:55		10:40		11:35							
Temperatura	ōС	30		27		27							
pH	-	7,9		6,9		7,0							
OD	mg/L	0,9		2,4		2,0							
DBO	mg/L	<u>74,5</u>		<u>17,3</u>		12,2							
Amônia	mg/L	ND		0,30		0,34							
Fósforo Total	mg/L	0,44		0,43		0,26							
Daphnia	FD₀	1		1		1							
Coliformes Termotolerantes	NMP/100mL	≥160000		22000		90000							
Condutividade Elétrica	μS/cm	766		277		257							
Salinidade	ups	0,4		0,1		0,1							
Classe na CONAMA 357/05													
Classe	-	2		2		2							
Indices e Indicadores de qualidade													
OD saturação	%	12		30		25							
Qualidade	-	MP		Р		Р							
IET rio	-	SE(66)		SE(65)		EU(63)							
Ecotoxicidade	-	NT		NT		NT							
Risco de Salinidade	-	М		В		В							
Pluviometria em Igaras	ssú - Fonte: APA	С											
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica	mm	103	151	253	321	358	319	308	184	108	38	34	50

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito

Ecotoxicidade: NT=não tóxica, T=tóxica Estuário e mar:BAA=baixa ação antrópica, AAA=alta ação antrópica

Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

Agência Estadual de Meio Ambiente Diretoria de Controle de Fontes Poluidoras Meio Ambiente

Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-60

,	_						3					
					Data e	Hora d	as Coleta	ıs				
Unid.	29/01		19/03		14/05						_	
	10:45		11:25		11:30							
ºC	26		25		26							
-	<u>5,8</u>		<u>5,6</u>		6,5							
mg/L	5,5		5,2		5,4							
	4,1		1,1		1,6							
UNT	2,5		4,5		8,0							
mg/L	69,6		57,2		51,4							
mg/L	ND		ND		ND							
mg/L	0,03		0,03		0,05							
NMP/100mL	800		700		8000							
FD₀	1		1		1							
μS/cm	54,1		49,7		55,9							
ups	<0,1		<0,1		<0,1							
57/05												1
-	2		2		2							
de qualidade	•		•									•
%	68		63		67							
-	PC		PC		Р							
-	OL(52)		OL(52)		ME(54)							
-	BO(64)		BO(64)		BO(61)							
-	NT		NT		NT							
-	В		В		В							
sú - Fonte: APA	С											
mm	66	166	157	135	211	374	124	130	198	63	37	67
	°C - mg/L mg/L UNT mg/L mg/L mg/L MMP/100mL FDd μS/cm ups 57/05 - de qualidade % ssú - Fonte: APA	PC 26 PC 26 PC 26 PC 5.8 mg/L 5,5 mg/L 4,1 UNT 2,5 mg/L 69,6 mg/L ND mg/L 0,03 NMP/100mL 800 FD _d 1 μS/cm 54,1 ups <0,1 57/05 PC 2 de qualidade % 68 PC PC OL(52) BO(64) NT B ssú - Fonte: APAC	PC 26	°C 26 25 - 5.8 5.6 mg/L 5,5 5,2 mg/L 4,1 1,1 UNT 2,5 4,5 mg/L 69,6 57,2 mg/L ND ND mg/L 0,03 0,03 NMP/100mL 800 700 FD _d 1 1 μS/cm 54,1 49,7 ups <0,1	°C 26 25 - 5.8 5.6 mg/L 5,5 5,2 mg/L 4,1 1,1 UNT 2,5 4,5 mg/L 69,6 57,2 mg/L ND ND mg/L 0,03 0,03 NMP/100mL 800 700 FD _d 1 1 μS/cm 54,1 49,7 ups <0,1	Unid. 29/01 19/03 14/05 10:45 11:25 11:30 °C 26 25 26 - 5.8 5.6 6,5 mg/L 5,5 5,2 5,4 mg/L 4,1 1,1 1,6 UNT 2,5 4,5 8,0 mg/L 69,6 57,2 51,4 mg/L ND ND ND mg/L 0,03 0,03 0,05 NMP/100mL 800 700 8000 FD _d 1 1 1 μS/cm 54,1 49,7 55,9 ups <0,1	Unid. 29/01 19/03 14/05 10:45 11:25 11:30 °C 26 25 26 - 5.8 5.6 6,5 mg/L 5,5 5,2 5,4 mg/L 4,1 1,1 1,6 UNT 2,5 4,5 8,0 mg/L 69,6 57,2 51,4 mg/L ND ND ND mg/L 0,03 0,03 0,05 NMP/100mL 800 700 8000 FDd 1 1 1 μS/cm 54,1 49,7 55,9 ups <0,1	Unid. 29/01	°C 26 25 26 - 5.8 5.6 6,5 mg/L 5,5 5,2 5,4 mg/L 4,1 1,1 1,6 UNT 2,5 4,5 8,0 mg/L 69,6 57,2 51,4 mg/L ND ND ND mg/L 0,03 0,03 0,05 NMP/100mL 800 700 8000 FD _d 1 1 1 μS/cm 54,1 49,7 55,9 ups <0,1	Unid. 29/01 19/03 14/05 11:30	Unid. 29/01	Unid. 29/01 19/03 14/05 11:30

Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

IQA: OT= ótima, BO= boa, AC= aceitável, RU= ruim e PE= péssima

Ecotoxicidade: NT=não tóxica, T=tóxica

IET: UO= ultraoligotrófico, OL= oligotrófico, ME= mesotrófico, EU= eutrófico, SE= supereutrófico e HE= hipereutrófico

Risco de salinidade do solo: B=baixo, M=médio, A=alto, MA=muito alto

Período chuvoso em negrito. Fonte: PERH

Agência Estadual de Meio Ambiente
Estadual de Meio Ambiente
Diretoria de Controle de Fontes Poluidoras
Diretoria de Gestão Territorial e Recursos Hídricos

BACIA HIDROGRÁFICA DO RIO IGARASSU - ESTAÇÃO: IG-65

						Data e	Hora d	as Coleta	ıs				
Parâmetro	Unid.	30/01											
		11:50											
Temperatura	°C	28											
pH	-	7,5											
OD	mg/L	<u>3,4</u>											
DBO	mg/L	8,3											
Amônia	mg/L	ND											
Nitrito	mg/L	ND											
Nitrato	mg/L	ND											
Fósforo Total	mg/L	0,08											
Condutividade Elétrica	μS/cm	40200											
Turbidez	UNT	6,0											
Clorofila a	μg/L	19											
Coliformes Termotolerantes	NMP/100mL	<u>11000</u>											
Salinidade	ups	28,6											
Classe na CONAMA	357/05		I		l.		I.				I.		I.
Classe	-	1 SB											
Indices e Indicadores	de qualidade	1 02	I		l.		I.				I.		I.
OD saturação	%	43											
Qualidade	-	MP											
IET rio													
Estuário e mar	-	AAA											
Risco de Salinidade													
Pluviometria em Igara	assú - Fonte: APA	С											
Total mensal	mm	66	166	157	135	211	374	124	130	198	63	37	67
Média histórica	mm	103	151	253	321	358	319	308	184	108	38	34	50

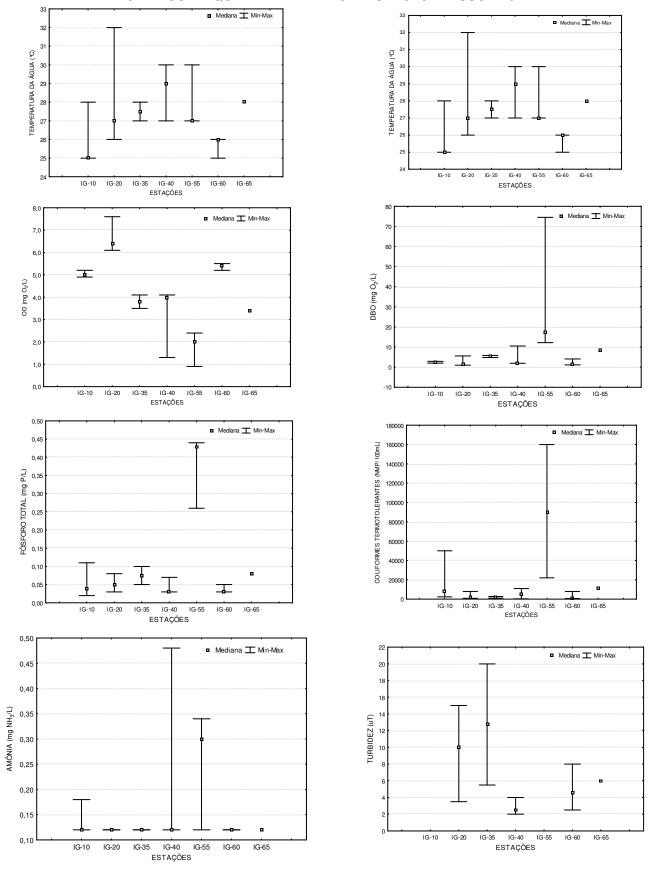
Avaliação de qualidade:NC=não comprometida, PC=pouco comprometida, MC=moderadamente comprometida, P= poluída e MP= muito poluída

Estuário e mar:BAA=baixa ação antrópica, AAA=alta ação antrópica

Ecotoxicidade: NT=não tóxica, T=tóxica Período chuvoso em negrito. Fonte: PERH

Agência Estadual de Meio Ambiente Diretoria de Controle de Fontes Poluidoras Diretoria de Gestão Territorial e Recursos Hídricos

Comentário final


Na Bacia Hidrográfica do rio Igarassu foram monitoradas, no período de janeiro a maio de 2014, as diversas zonas homogêneas identificadas na bacia a partir de quatro estações de amostragem a estas associadas, além de quatro estações localizadas em captações para abastecimento público. A partir dos dados de qualidade da água conclui-se que:

- Um comprometimento da qualidade da água foi observado em toda a bacia do rio Igarassu para o
 período avaliado. Entre os parâmetros monitorados destacam-se com um número maior de
 inconformidades, em relação à classe 2 das águas doces da Resolução do CONAMA 357/05, em ordem
 decrescente: Coliformes Termotolerantes, OD, DBO e Fósforo Total.
- Valor de OD que não atende ao limite das águas doces, indicado na Resolução do CONAMA 357/05 (OD<2mg/L) foi registrado para as estações IG-40 e IG-55 em janeiro de 2014.
- Os níveis de Coliformes Termotolerantes evidenciam o lançamento de esgoto de origem doméstica em toda bacia, notadamente para as estações IG-10, IG-35, IG-55 e IG-65 que apresentaram inconformidades em todo o período avaliado.
- Nos rios da bacia do Igarassu, que nascem nos tabuleiros costeiros passando pela baixada litorânea, onde os solos são tipicamente ácidos, observou-se para as estações IG-20 e IG-60, tendência natural à acidez (pH<6,0). No estuário observou-se água básica (janeiro/14).
- O rio Igarassu apresenta água doce no seu trecho interiorano e salobra (janeiro) no trecho estuarino, que foi caracterizado como de alta ação antrópica, em relação ao padrão típico estadual de águas costeiras.
- Alto nível de Ferro Total foi observado para estação IG-35, em março de 2014.
- Com relação à qualidade da água nas captações para abastecimento público IQA, nos rios Pitanga (IG-20) e Tabatinga (IG-60), observou-se água boa em todo o período avaliado. Para captação Conga(IG-40) observou-se qualidade variando de aceitável a boa, com a predominância da primeira condição.
- Quanto à ecotoxidade, observou-se efeito tóxico agudo no mês de janeiro, no Rio Pitanga (IG-10), indicando contaminação por agente químico.
- O IET (Índice de Estado Trófico) que avalia o enriquecimento por nutrientes variou de oligotrófico a supereutrófico, sendo mesotrófico a situação mais frequente. Houve o predomínio da situação oligotrófico para as estações IG-40 e IG-60 e supereutrófico para a estação IG-55. Para as demais estações a condição mesotrófico foi a que predominou.

Diante do exposto, evidencia-se o comprometimento da qualidade da água na bacia do rio Igarassu, o que indica necessidade de ações de controle e fiscalização das fontes responsáveis, dado o estado atual de qualidade das águas nesta bacia.

GRÁFICO DE QUALIDADE DA BACIA DO RIO IGARASSU - 2014

